Sum Of Digits

Posted by Sha Cheng on Sunday, March 7, 2021

Sum all the digits of number N (>0), if result has more than one digit, repeat summing all the digits of the result of each round, until reaching a single digit number R.

For example:

$$N = 365 => 3 + 6 + 5 = 14 => R = 1 + 4 = 5 $$

Algorithm: $$R = (N – 1) mod 9 + 1$$

Proof

Represent each digit in N as a_{k}

k: digit position from 0 to n, n = total digits – 1

$$N = {a_{n}}*10^{n}+{a_{n-1}}*10^{n-1}…+{a_{1}}*10^{1}+{a_{0}}*10^{0}$$

$$∵ {a_{k}}*10^{k} ≡ {a_{k}} (mod 9) (because any 10^{k} mod 9 = 1)$$

$$∴ a_{n}*10^{n}+a_{n-1}*10^{n-1}…+{a_{1}}*10^{1}+{a_{0}}*10^{0} ≡ {a_{n}}+{a_{n-1}}…+{a_{1}}+{a_{0}} (mod 9)$$

$$=> N ≡ R (mod 9)$$

Modulo 9 produces a natural number ∈ [0, 8], to achieve a result ∈ [1, 9]:

$$(N – 1) mod 9 + 1 = (R – 1) mod 9 + 1 = R$$

$$=> R = (N – 1) mod 9 + 1$$